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my intellectual trajectory
Herbert E. Scarf

The time allotted for these talks is pretty short, so I won’t talk about my father, Levi, who 
lost his small business in 1929, a few months after he married my mother, Lena Elkman. 
My twin brother, Frederick, and I were born in July 1930. My father never recovered 
from the Great Depression. We were helped out by my mother’s siblings and lived in 
the house given to my mother’s father by one of my uncles.

So let us fast-forward to puberty, a time when one fine morning I woke with the 
realization that I was a mathematician. I don’t mean this in a formal sense; I simply 
grasped what mathematics was all about. I knew that a mathematical result might 
have several quite distinct arguments, which could be combined in a variety of ways. 
I knew that a theorem was di≠erent from a lemma. I read the biographies of great 
mathematicians, and I still have my annotated copy of Men of Mathematics by E.T. Bell. 
I taught myself the calculus of several variables and the theory of complex functions. I 
taught myself the first thirty-five digits of pi.

My instructors at the South Philadelphia High School for Boys—a pretty rough-
house school—knew nothing about this passion of mine. In eleventh grade I learned 
about a Mathematics Tournament o≠ered by Temple University for all high school 
students in Pennsylvania. To the shocked surprise of my teachers, and my relatives, I 
placed first in the tournament.

Temple University o≠ered me a scholarship, which I accepted. As a student, I had 
unusual habits. I started to take graduate courses immediately. I rarely attended class. I 
would learn the material by myself and drop in to take the exams. The professors must 
have been somewhat taken aback by this behavior. But I had a wonderful piece of good 
luck. The single female mathematics professor at Temple, Dr. Marie Wurster, then 
perhaps thirty, became my friend. I was invited to knock on her door at any time that 
was convenient for her. We talked about mathematical topics that I was studying or 
planning to study; she talked about her fields of expertise. And she told me about the 
William Putnam Mathematical Competition, open to every undergraduate student in 
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North America. I entered the competition in my junior year at Temple and placed in 
the first ten.

I graduated from Temple in 1951, a year containing two extremely significant 
events: I met my wife and great friend, Maggie Scarf, to whom I have been married for 
sixty-one years. The second event was being admitted to the Graduate Department of 
Mathematics at Princeton in 1951.

At that time, Princeton had the very best Department of Mathematics in the entire 
world. My fellow students included Ralph Gomory, Lloyd Shapley, Martin Shubik, and 
John Nash. Nash, a recent graduate, would frequently return from MIT to Princeton. 
My adviser (and friend) was Salomon Bochner. My first scientific paper resulted from 
a remark that Bochner made in a class that I attended, and which he submitted to the 
Proceedings of the National Academy of Sciences.

The Graduate College, where I lived, was physically close to the Institute for 
Advanced Study, and I would frequently walk on the institute grounds. It was not 
unusual to see Einstein strolling with Kurt Gödel, the great logician. Einstein would 
smile benignly, but Gödel never did. I was totally unaware of the work being done 
at the institute by von Neumann and his colleagues on the modern programmable 
computer.

During my time at Princeton, I was disappointed by the ultra-pure mathematics 
that was the bread and butter of the department at that time. My hope was that the 
mathematical problems I worked on would have an ultimate practical application: that 
life would be better for someone, or some group of people, because of the intellectual 
issues I was struggling with. 

And so it was that I left academic life and went to the RAND Corporation in Santa 
Monica, California, with Maggie and our newly born daughter, Martha. I was in the 
Mathematics department, along with George Dantzig, the inventor of the simplex 
method for solving linear programming problems, and Lloyd Shapley, who made the 
same transition as I had. 

At some point, the organization su≠ered a budgetary crisis and I was transferred 
to a unit of the Economics department involved in operations research and manage-
ment sciences. I started working on inventory problems: the purchase and storage of 
commodities whose future demands were not known with perfect certainty. 

Inventory management is a serious practical field. If you are an automobile manu-
facturer, you don’t order a door when you need it; you keep them in stock. Pharmacists 
keep an inventory of medicines; supermarkets keep an inventory of cheese, cans of 
baked beans, and boxes of linguini. 

I met Kenneth Arrow, who was himself working on the management of invento-
ries. My life was changed. He invited me to spend a year with him at Stanford jointly 
working on inventory theory. It was a perfect time for me. The major themes of eco-
nomic theory were being formulated in mathematical terms, and I fortunately had 
precisely the right set of skills to make serious contributions. A lovely set of apples was 
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hanging from the tree, and I plucked them and ate them one after another with great 
pleasure.

I continued to work on inventory theory and wrote a paper with Andrew Clark, 
then at RAND, which started the entire field of supply chain management. My most 
elegant result was a demonstration that the optimal policies associated with the man-
agement of inventories involved a sequence of very simple ordering policies. The sim-
plicity of these policies in a general setting was totally unexpected. The proof did not 
involve very deep mathematics, but it was very odd—strange and extremely unusual. 
Some of my friends have said that this was the best work I had ever done. 

I started to move into economic theory. Economics has a notion of a competitive 
equilibrium, a set of prices for all of the goods and services in the economy such that 
DEMAND = SUPPLY for all goods simultaneously. How do you find these prices if 
the economy is not currently at equilibrium? One idea is that prices adjust in a simple 
way: if the demand for a good is larger than its supply, then the price increases. If the 
demand is less than the supply, then the price decreases. In class, I would always refer 
to this as the New York Times adjustment mechanism. This adjustment process can be 
formulated mathematically as a series of di≠erential equations. My first paper in eco-
nomics was to provide a very simple example in which this process did not converge. 
The prices oscillated forever in a closed loop without approaching the equilibrium.

And so I turned my attention to the purely mathematical question of constructing 
an algorithm that would always find an equilibrium. The proofs of existence of a com-
petitive equilibrium typically used Brouwer’s fixed point theorem, which can be para-
phrased by the statement, “A nice transformation of the unit circle, and its insides, into 
itself, will always leave at least one point fixed.” And so, I decided to find an e≠ective 
algorithm to calculate that point. And I did. To find it, google “Scarf Algorithm.”

This result opened an entirely new field of economics: applied general equilibrium 
analysis, with the result that large general equilibrium models could be solved on the 
computer, more or less unrestricted by size. 

I, myself, was not knowledgeable about the details of the American economy, and 
my original examples were small, elementary models. But I was very fortunate to have 
some marvelous graduate students: Timothy Kehoe, Jaime Serra, John Shoven, John 
Whalley, and others, who actually knew about these intricacies. They took over from 
me and published a number of papers containing realistic models. I quote Shoven:

Scarf ’s algorithm permitted the general equilibrium model to enter the main-
stream toolkit for applied economists. It removed the restrictions of being analyti-
cally tractable. Before Scarf ’s breakthrough, the only general equilibrium analysis 
of tax and trade policy was a two-sector model that could be solved analytically. 
Today, the models are much more disaggregated, much more sophisticated and 
capable of providing real guidance to economic policy makers.

Every country has its own general equilibrium model. Courses in applied general 
equilibrium are given throughout the world by a company called EconMod. Students 
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in a great variety of countries are taught how to set up equilibrium models for their 
own economies. I am invisible to this organization. 

Next I started to look at the general equilibrium model from a game theoretic 
point. Game theory comes in two colors: cooperative game theory and noncooperative 
game theory. In cooperative game theory groups of people (players) are allowed to 
engage in mutually beneficial activities. Alice can say to Bob, “We each own a house. 
I like your house more than I like mine. How do you feel?” Bob responds, “Well, I 
actually like yours better than mine. Let’s exchange houses.” And they do. I was taught 
about cooperative game theory by my good friend Martin Shubik, during a long walk 
from Columbia University to his apartment on Sutton Place.

Noncooperative game theory works with strategies. A selection of strategies, one 
for each player, is a Nash equilibrium if no player has an incentive to change his or 
her strategy, assuming that the remaining players do not change theirs. This idea has 
captured all of microeconomic theory. I am not delighted by it, personally.

Teaching has, of course, been an important part of my life. I prepare talks with 
great anxiety, even if I know their contents perfectly. I make elaborate notes, which are 
instantly discarded when I enter the classroom, and I begin singing from the musical 
score of an opera that I have in my head. I smile at all of the students and ask them 
rhetorical questions, which I frequently answer myself. 

I really like my colleagues, though I sometimes have no idea at all about the nature 
of their research. In my heyday, I was on lots of university committees. I was director 
of the Division of Social Sciences. Charles Taylor, the provost of those years, once 
asked me to join the provost’s o∞ce. He had not yet realized an important aspect of my 
personality: I cannot make things actually happen in the real world!

I adore my family: I have three daughters, with three respective spouses, seven 
grandchildren, and one great-grandchild. I am told by many, many people that my 
lovely wife is a wonderful writer. I believe them completely, and I have always enjoyed 
being her first editor. Maggie and I have seen a great many operas and we love ballet. 
We have, for many years, had the same wonderful seats at the Met for the American 
Ballet. We also go to the movies in Manhattan, and we have some favorite greasy 
spoons near our apartment on West 66th Street near the Met. 

Back to economics. The general equilibrium model has two major failings, but 
despite these failings, it cannot be ignored. 

The model doesn’t treat time very well. If you make a consumption or investment 
decision today, it would be very useful to know your income tomorrow, and more 
generally the way in which the economy is going to develop over time. This leads to 
macroeconomics.

What is the second failing? It may not be clear to the general public that economic 
theory has no way of dealing with economies of scale in production—I mean no way at 
all. Economic theory makes the assumption of constant returns to scale. Taken literally, 
this means that if I want an automobile, I would purchase steel, glass, rubber, electrical 
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wiring, and tools and hire skilled labor and produce the car in my own backyard. The 
assembly line is irrelevant to classical economic theory. I think about this issue a lot. It 
deals with indivisibilities in production: large items like an assembly line, a bridge, the 
railroad track from New York to Boston, the underwater Channel Tunnel from Britain 
to France. 

And so I busied myself in this research. On the way, I wrote complex and elegant 
papers, some of which started new areas of research. Indeed, you might consider me to 
be an intellectual polygamist, because I am considered the father of several important 
fields in economics, computer science, and operations research. One of these fields 
led to the beautiful figure being passed around the room. The figure was made by an 
eminent sculptress, Ann Lehman, who is in the audience. 

What is this figure? It is a collection of lines in space. The ends of the lines are 
points in space and, as such, have coordinates (x, y, z). In this case the points have 
integral coordinates, such as (7, 1, 3). 

There actually are triangles in the figure: any three edges that look like a triangle 
are actually a triangle in the figure. We didn’t put them in the sculpture, because they 
would obscure the lines. So the figure is really a two-dimensional surface made up of 
lots of triangles. It’s a very nice figure: a circle and its interior. The red ball is the center 
of the circle; the other points are on the boundary.

The boundary points are connected by the blue line. There are many other lines 
which are not on the boundary. The green point is not in the figure: it’s a reference 
point. This figure is the essential part of an algorithm for solving a set of mathematical 
problems of enormous practical significance. 

Ann P. Lehman, Scarf Complex, 2013. Stainless steel




